Homework 5 Solutions

Math 131A-3

1. Problems from Ross.

(17.3) (a) By assumption, $\cos (x)$ is continuous, so since products of continuous functions are continuous, $\cos ^{4} x$ is continuous. Moreover, constant funtions are continuous, and sums of continuous functions are continuous, so $1+\cos ^{4} x$ is continuous. Finally, $\log x$ is continuous on its domain, all positive numbers, so given that $1+\cos ^{4} x>1$ and compositions of continuous functions are continuous, $\log \left(1+\cos ^{4} x\right)$ is continuous on \mathbb{R}. (b) Because 2^{x} and x^{2} are continuous functions and compositions of continuous functions are continuous, $2^{x^{2}}$ is also continuous.
(17.10) In each case, it suffices to find a sequence $s_{n} \rightarrow x_{0}$ such that $\lim f\left(s_{n}\right) \neq f\left(x_{0}\right)$.
(a) Let $f(x)=1$ for $x>0$ and $f(x)=0$ for $x \leq 0$. Consider the sequence $\left(s_{n}\right)$ where $s_{n}=\frac{1}{n}$. Then $\lim s_{n}=0$, but $\lim f\left(s_{n}\right)=\lim f\left(\frac{1}{n}\right)=1 \neq 0$. So f is not continuous at 0 .
(b) Let $g(x)=\sin \left(\frac{1}{x}\right)$ for $x \neq 0$ and $g(0)=0$. Consider the sequence $\left(s_{n}\right)$ where $s_{n}=\frac{1}{\left(2 n+\frac{1}{2}\right) \pi}$. Then $\lim s_{n}=0$, but $\lim f\left(s_{n}\right)=\lim \sin \left(\left(2 n+\frac{1}{2}\right) \pi\right)=\lim 1=1 \neq f(0)$. Ergo f is not continuous at 0 .
(c)Let $\operatorname{sgn}(x)=-1$ for $x<0, \operatorname{sgn}(x)=1$ for $x>0$, and $\operatorname{sgn}(0)=0$. Again consider the sequence $\left(s_{n}\right)$ such that $s_{n}=\frac{1}{n}$. Then $\lim s_{n}=0$, but $\lim f\left(s_{n}\right)=\lim 1=1$. So f is not continuous at 0 .
(17.12) (a) Suppose f is a continuous real-valued function on (a, b) such that $f(r)=0$ for all r rational in (a, b). Let $x \in(a, b)$. For each $n \in \mathbb{N}$, choose a rational number r_{n} in the interval $\left(x-\frac{1}{n}, x\right) \cap(a, b)$. (We know this is possible because every interval contains a rational number.) Then $\left|x-r_{n}\right|<\frac{1}{n}$, so $\lim r_{n}=x$. Therefore by continuity, $f(x)=\lim f\left(r_{n}\right)=\lim 0=0$.
(b) Consider the function $f-g(x)$ on (a, b), which is continuous on (a, b) since both f and g are continuous on $a, b)$. Since $f(r)=g(r)$ on all rational $r \in(a, b), f-g(r)=0$ on all rational $r \in(a, b)$. Ergo by part (a), $f-g(x)=0$ for all $x \in(a, b)$, so $f(x)=g(x)$ for all $x \in(a, b)$.

Ergo continuous functions on intervals are determined by their values on the rational numbers!
(18.4)Let $S \subset \mathbb{R}$. Suppose there exists a sequence $\left(x_{n}\right)$ in S such that $x_{n} \rightarrow x_{0} \notin S$. Let $f(x)=\frac{1}{x-x_{0}}$. Then f is well-defined on S since $x_{0} \notin S$, and is continuous since it is a quotient of continuous functions such that the denominator is nonzero. Now for any $M>0$, choose N such that $n>N$ implies $\left|x_{n}-x_{0}\right|<\frac{1}{M}$. Then for $n>N$, $\left|f\left(x_{n}\right)\right|=\frac{1}{\left|x_{n}-x_{0}\right|}>M$. Since M was arbitrary, f is unbounded on S.

So any set which is not closed (i.e. does not contain all its limit points) is the domain of some unbounded continuous function.
(18.7) Let $f(x)=x e^{x}$. Since products of continuous functions are continuous, f is continuous on \mathbb{R}. Observe that $f(0)=0$ and $f(1)=e \approx 2.718$. Since $f(0)<2<f(1)$, by the Intermediate Value Theorem, there is some x in $(0,1)$ such that $f(x)=2$.
(18.10) Let f be a continuous function on $[0,2]$ such that $f(0)=f(2)$. Consider the function $g(x)=f(x+1)-f(x)$ on $[0,1]$. Observe that $f(x+1)$ is a composition of the continuous functions $f(x)$ and $x+1$, hence continuous, so g is a difference of continuous functions and therefore continuous. Moreover, $g(0)=f(1)-f(0)=f(1)-f(2)=$ $-[f(2)-f(1)]=-g(1)$. Since $g(0)=-g(1)$, either $g(0) \leq 0 \leq g(1)$ or $g(0) \geq 0 \geq g(1)$; in either case, by the Intermediate Value Theorem, there exists $x \in[0,1]$ such that $g(x)=0$. This implies that $0=f(x+1)-f(x)$, or equivalently $f(x+1)=f(x)$. Let $y=x+1$, then x, y have the property that $|y-x|=1$ and $f(x)=f(y)$.

Ergo if you start a car, drive for two hours, and then stop, at some point during the second hour you will be driving exactly the speed you were driving an hour ago.
(19.1) (a) $f(x)=x^{17} \sin x-e^{x} \cos (3 x)$ is built by sums, products, and compositions of continuous functions, hence is continuous. Ergo since $[0, \pi]$ is a closed interval, by Theorem $19.2 f$ is uniformly continuous on $[0, \pi]$.
(c) $f(x)=x^{3}$ can be extended continuously from $(0,1)$ to $[0,1]$ by letting $f(0)=0$ and $f(1)=1$. Ergo by Theorem 19.5, f is uniformly continuous on $(0,1)$.
(f) If $f(x)=\sin \left(\frac{1}{x^{2}}\right)$ on $(0,1]$, consider the Cauchy sequence $\left(s_{n}\right)$ where $s_{n}=\frac{1}{\sqrt{\frac{n \pi}{2}}}$ for $n \geq 1$. Then $f\left(s_{n}\right)=\sin \left(\frac{n \pi}{2}\right)$, so the sequence $\left(f\left(s_{n}\right)\right)$ is $(1,0,-1,0,1,0, \cdots)$, which is not Cauchy. Since uniformly continuous functions map Cauchy sequences to Cauchy sequences by Theorem 19.4, f is not uniformly continuous on $(0,1]$.
(g)Let $f(x)=x^{2} \sin \frac{1}{x}$ on $(0,1]$. We claim that f may be extended to \tilde{f} continuous on $[0,1]$ by setting $\tilde{f}(0)=0$. For if $\left(x_{n}\right)$ is any sequence in $(0,1]$ converging to 0 , then $0 \leq\left|f\left(x_{n}\right)\right|=\left|x_{n}^{2} \sin \frac{1}{x}\right| \leq\left|x_{n}^{2}\right|$, so since $x_{n}^{2} \rightarrow 0, \tilde{f}\left(x_{n}\right) \rightarrow 0=\tilde{f}(0)$. Hence \tilde{f} is continuous at 0 , and by Theorem 19.5 the existence of a continuous extension to $[0,1]$
suffices to show that f is uniformly continuous on $(0,1]$.
(19.2)(b) Let $f(x)=x^{2}$ on [0,3]. Let $\epsilon>0$, and set $\delta=\frac{\epsilon}{6}$. Then for $x, y \in[0,3]$, if $|x-y|<\delta,|f(x)-f(y)|=\left|x^{2}-y^{2}\right|=|x-y||x+y|<\frac{\epsilon}{6}(6)=\epsilon$. Ergo f is uniformly continuous on $[0,3]$.
(19.4)(a) Let f be uniformly continuous on a bounded set S. Suppose that f is unbounded on S. Then for any $N \in \mathbb{N}$, there is an $x_{n} \in S$ such that $\left|f\left(x_{n}\right)\right|>N$. Consider the sequence $\left(x_{n}\right)$. By the Bolzano-Weierstrass Theorem, some subsequence $\left(x_{n_{k}}\right)$ converges, hence is Cauchy. But by Theorem 19.4, since f is uniformly continuous, f maps Cauchy sequences to Cauchy sequences, so $\left(f\left(x_{n_{k}}\right)\right)$ is a Cauchy sequence, hence converges to some real number. However, by construction $\lim f\left(x_{n_{k}}\right)=\infty$. This is a contradiction, so f must be bounded on S.
(b) Observe that $f(x)=\frac{1}{x^{2}}$ is not bounded on the bounded set $(0,1)$, so f cannot be uniformly continuous on $(0,1)$.
2. The stars over Babylon function.

- For any rational number r, suppose for the sake of contradiction that $r+\sqrt{2}$ is rational. Then since the rationals are closed under taking additive inverses and addition, we sould have $(r+\sqrt{2})+-(r)$ rational, but this implies that $\sqrt{2}$ is rational, which we know to be false. Ergo $r+\sqrt{2}$ is always irrational. Now given any interval (a, b), we know the interval $(a-\sqrt{2}, b-\sqrt{2})$ contains a rational number r, so (a, b) contains a number of the form $r+\sqrt{2}$. Hence every interval contains an irrational number.
- Let $x_{0}=\frac{p}{q}$ be rational, such that $f\left(x_{0}\right)=\frac{1}{q}$. Then for every $n \in \mathbb{N}$, choose an irrational $x_{n} \in\left(x_{0}-\frac{1}{n}, x_{0}\right) \cap(0,1]$. The sequence $\left(x_{n}\right)$ has the property that $\left|x_{0}-x_{n}\right|<\frac{1}{n}$ for all $n \in \mathbb{N}$, so $x_{n} \rightarrow x_{0}$. However, since x_{n} is irrational, $f\left(x_{n}\right)=0$ for all n, so $\lim f\left(x_{n}\right)=0 \neq \frac{1}{q}=f\left(x_{0}\right)$. So f is discontinuous at x_{0}.
- Let x_{0} be irrational, so that $f\left(x_{0}\right)=0$. Observe that the set of values our function f takes is $\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Notice that for every $n \in N$, if $r \in(0,1]$ has $f(r)=\frac{1}{n}$, it must be the case that r can be written as $\frac{i}{n}$ for some i. Therefore, if we let

$$
\delta_{N}=\min \left\{\left|x_{0}-\frac{i}{n}\right|: 0 \leq i \leq n \leq N, i, n \in \mathbb{N}\right\}
$$

we see that for any $n \leq N,\left(x_{0}-\delta_{N}, x_{0}+\delta_{N}\right)$ contains no r such that $f(r)=\frac{1}{n}$. Ergo $\left|x-x_{0}\right|<\delta_{N}$ implies that $\left|f(x)-f\left(x_{0}\right)\right|<\frac{1}{N}$. Hence f is continuous at x_{0}.

