
Homework 5 Solutions
Math 131A-3

1. Problems from Ross.

(17.3) (a) By assumption, cos(x) is continuous, so since products of continuous func-
tions are continuous, cos4 x is continuous. Moreover, constant funtions are continuous,
and sums of continuous functions are continuous, so 1 + cos4 x is continuous. Finally,
log x is continuous on its domain, all positive numbers, so given that 1 + cos4 x > 1
and compositions of continuous functions are continuous, log(1 + cos4 x) is continuous
on R. (b) Because 2x and x2 are continuous functions and compositions of continuous
functions are continuous, 2x

2
is also continuous.

(17.10) In each case, it suffices to find a sequence sn → x0 such that lim f(sn) 6= f(x0).

(a) Let f(x) = 1 for x > 0 and f(x) = 0 for x ≤ 0. Consider the sequence (sn) where
sn = 1

n
. Then lim sn = 0, but lim f(sn) = lim f( 1

n
) = 1 6= 0. So f is not continuous at 0.

(b) Let g(x) = sin( 1
x
) for x 6= 0 and g(0) = 0. Consider the sequence (sn) where

sn = 1
(2n+ 1

2
)π

. Then lim sn = 0, but lim f(sn) = lim sin((2n+ 1
2
)π) = lim 1 = 1 6= f(0).

Ergo f is not continuous at 0.

(c)Let sgn(x) = −1 for x < 0, sgn(x) = 1forx > 0, and sgn(0) = 0. Again consider
the sequence (sn) such that sn = 1

n
. Then lim sn = 0, but lim f(sn) = lim 1 = 1. So f

is not continuous at 0.

(17.12) (a) Suppose f is a continuous real-valued function on (a, b) such that f(r) = 0
for all r rational in (a, b). Let x ∈ (a, b). For each n ∈ N, choose a rational number
rn in the interval (x − 1

n
, x) ∩ (a, b). (We know this is possible because every interval

contains a rational number.) Then |x−rn| < 1
n
, so lim rn = x. Therefore by continuity,

f(x) = lim f(rn) = lim 0 = 0.

(b) Consider the function f − g(x) on (a, b), which is continuous on (a, b) since both f
and g are continuous on a, b). Since f(r) = g(r) on all rational r ∈ (a, b), f − g(r) = 0
on all rational r ∈ (a, b). Ergo by part (a), f−g(x) = 0 for all x ∈ (a, b), so f(x) = g(x)
for all x ∈ (a, b).

Ergo continuous functions on intervals are determined by their values on the rational
numbers!



(18.4)Let S ⊂ R. Suppose there exists a sequence (xn) in S such that xn → x0 /∈ S.
Let f(x) = 1

x−x0 . Then f is well-defined on S since x0 /∈ S, and is continuous since
it is a quotient of continuous functions such that the denominator is nonzero. Now
for any M > 0, choose N such that n > N implies |xn − x0| < 1

M
. Then for n > N ,

|f(xn)| = 1
|xn−x0| > M . Since M was arbitrary, f is unbounded on S.

So any set which is not closed (i.e. does not contain all its limit points) is the domain
of some unbounded continuous function.

(18.7) Let f(x) = xex. Since products of continuous functions are continuous, f is
continuous on R. Observe that f(0) = 0 and f(1) = e ≈ 2.718. Since f(0) < 2 < f(1),
by the Intermediate Value Theorem, there is some x in (0, 1) such that f(x) = 2.

(18.10) Let f be a continuous function on [0, 2] such that f(0) = f(2). Consider the
function g(x) = f(x+ 1)−f(x) on [0, 1]. Observe that f(x+ 1) is a composition of the
continuous functions f(x) and x+1, hence continuous, so g is a difference of continuous
functions and therefore continuous. Moreover, g(0) = f(1) − f(0) = f(1) − f(2) =
−[f(2)−f(1)] = −g(1). Since g(0) = −g(1), either g(0) ≤ 0 ≤ g(1) or g(0) ≥ 0 ≥ g(1);
in either case, by the Intermediate Value Theorem, there exists x ∈ [0, 1] such that
g(x) = 0. This implies that 0 = f(x+ 1)− f(x), or equivalently f(x+ 1) = f(x). Let
y = x+ 1, then x, y have the property that |y − x| = 1 and f(x) = f(y).

Ergo if you start a car, drive for two hours, and then stop, at some point during the
second hour you will be driving exactly the speed you were driving an hour ago.

(19.1) (a) f(x) = x17 sinx − ex cos(3x) is built by sums, products, and compositions
of continuous functions, hence is continuous. Ergo since [0, π] is a closed interval, by
Theorem 19.2 f is uniformly continuous on [0, π].

(c) f(x) = x3 can be extended continuously from (0, 1) to [0, 1] by letting f(0) = 0
and f(1) = 1. Ergo by Theorem 19.5, f is uniformly continuous on (0, 1).

(f) If f(x) = sin( 1
x2

) on (0, 1], consider the Cauchy sequence (sn) where sn = 1√
nπ
2

for

n ≥ 1. Then f(sn) = sin(nπ
2

), so the sequence (f(sn)) is (1, 0,−1, 0, 1, 0, · · · ), which is
not Cauchy. Since uniformly continuous functions map Cauchy sequences to Cauchy
sequences by Theorem 19.4, f is not uniformly continuous on (0, 1].

(g)Let f(x) = x2 sin 1
x

on (0, 1]. We claim that f may be extended to f̃ continuous

on [0, 1] by setting f̃(0) = 0. For if (xn) is any sequence in (0, 1] converging to 0,
then 0 ≤ |f(xn)| = |x2n sin 1

x
| ≤ |x2n|, so since x2n → 0, f̃(xn) → 0 = f̃(0). Hence f̃ is

continuous at 0, and by Theorem 19.5 the existence of a continuous extension to [0, 1]



suffices to show that f is uniformly continuous on (0, 1].

(19.2)(b) Let f(x) = x2 on [0, 3]. Let ε > 0, and set δ = ε
6
. Then for x, y ∈ [0, 3], if

|x− y| < δ, |f(x)− f(y)| = |x2 − y2| = |x− y||x+ y| < ε
6
(6) = ε. Ergo f is uniformly

continuous on [0, 3].

(19.4)(a) Let f be uniformly continuous on a bounded set S. Suppose that f is un-
bounded on S. Then for any N ∈ N, there is an xn ∈ S such that |f(xn)| > N .
Consider the sequence (xn). By the Bolzano-Weierstrass Theorem, some subsequence
(xnk) converges, hence is Cauchy. But by Theorem 19.4, since f is uniformly continu-
ous, f maps Cauchy sequences to Cauchy sequences, so (f(xnk)) is a Cauchy sequence,
hence converges to some real number. However, by construction lim f(xnk) =∞. This
is a contradiction, so f must be bounded on S.

(b) Observe that f(x) = 1
x2

is not bounded on the bounded set (0, 1), so f cannot be
uniformly continuous on (0, 1).

2. The stars over Babylon function.

• For any rational number r, suppose for the sake of contradiction that r +
√

2 is
rational. Then since the rationals are closed under taking additive inverses and
addition, we sould have (r+

√
2)+−(r) rational, but this implies that

√
2 is ratio-

nal, which we know to be false. Ergo r +
√

2 is always irrational. Now given any
interval (a, b), we know the interval (a−

√
2, b−

√
2) contains a rational number

r, so (a, b) contains a number of the form r +
√

2. Hence every interval contains
an irrational number.

• Let x0 = p
q

be rational, such that f(x0) = 1
q
. Then for every n ∈ N, choose an

irrational xn ∈ (x0 − 1
n
, x0) ∩ (0, 1]. The sequence (xn) has the property that

|x0−xn| < 1
n

for all n ∈ N, so xn → x0. However, since xn is irrational, f(xn) = 0
for all n, so lim f(xn) = 0 6= 1

q
= f(x0). So f is discontinuous at x0.

• Let x0 be irrational, so that f(x0) = 0. Observe that the set of values our function
f takes is {0}∪{ 1

n
: n ∈ N}. Notice that for every n ∈ N , if r ∈ (0, 1] has f(r) = 1

n
,

it must be the case that r can be written as i
n

for some i. Therefore, if we let

δN = min{|x0 −
i

n
| : 0 ≤ i ≤ n ≤ N, i, n ∈ N},

we see that for any n ≤ N , (x0 − δN , x0 + δN) contains no r such that f(r) = 1
n
.

Ergo |x− x0| < δN implies that |f(x)− f(x0)| < 1
N

. Hence f is continuous at x0.


